

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 49 (2008) 1801-1803

Synthesis and decarboxylation of N-acyl- α -triphenylphosphonio- α -amino acids: a new synthesis of α -(N-acylamino)alkyltriphenylphosphonium salts

Roman Mazurkiewicz*, Agnieszka Październiok-Holewa, Mirosława Grymel

Department of Organic and Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Krzywoustego 4, PL 44-100 Gliwice, Poland

Received 20 November 2007; revised 22 December 2007; accepted 10 January 2008 Available online 15 January 2008

Abstract

4-Phosphoranylidene-5(4*H*)-oxazolones 1 undergo hydrolysis in THF in the presence of HBF₄ at room temperature to give *N*-acyl- α -triphenylphosphonioglycines 3 (R² = H) in very good yields. 4-Alkyl-4-triphenylphosphonio-5(4*H*)-oxazolones 2 react with water in CH₂Cl₂/THF solution without any acidic catalyst at 0–5 °C in a few days yielding *N*-acyl- α -triphenylphosphonio- α -amino acids 3 (R² = Me) or α -(*N*-acylamino)alkyltriphenylphosphonium salt 4 (R² = CH₂OMe). α -Triphenylphosphonio- α -amino acids 3, on heating up to 105–115 °C under reduced pressure (5 mmHg) or on treatment with diisopropylethylamine in CH₂Cl₂ at 20 °C undergo decarboxylation to give the corresponding α -(*N*-acylamino)alkyltriphenylphosphonium salts 4, usually in very good yields.

Keywords: 4-Triphenylphosphoranylidene-5(4H)-oxazolone hydrolysis; 4-Alkyl-4-triphenylphosphonio-5(4H)-oxazolone hydrolysis; N-Acyl- α -triphenylphosphonio- α -amino acids; Decarboxylation; α -(N-Acylamino)alkyltriphenylphosphonium salts

 α -Amino acid derivatives with a C $_{\alpha}$ -P bond have attracted significant attention from organic chemists due to their many important applications in organic synthesis.¹

In 1996, we described a simple synthesis of 4-triphenylphosphoranylidene-5(4H)-oxazolones (TPO) **1** from *N*-acylglycines² and effective methods for their 4-*C* alkylation to 4-alkyl-4-triphenylphosphonio-5(4H)-oxazolones (ATPO) **2**³ (Scheme 1).

In the present Letter, we report methods for the hydrolysis of TPO 1 and ATPO 2 to hitherto unknown *N*-acyl- α triphenylphosphonio- α -amino acids (PAA) 3, which were subsequently decarboxylated to α -(*N*-acylamino)alkyltriphenylphosphonium salts (APS) 4 (Scheme 1).

 α -(*N*-Acylamino)alkyltriphenylphosphonium salts **4** are valuable bifunctional organic reagents used for syntheses of heterocyclic systems, including oxazole,^{4–6} thiazole,^{5–7} imidazole,^{7,8} tetrazole^{9,10} and quinazoline derivatives.¹⁰

^{*} Corresponding author. Tel.: +48 32 2371724; fax: +48 32 2371549. *E-mail address:* Roman.Mazurkiewicz@polsl.pl (R. Mazurkiewicz).

^{0040-4039/\$ -} see front matter \odot 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.01.051

Table 1 The synthesis of *N*-acyl- α -triphenylphosphonio- α -amino acids **3**

	TPO 1 or A	TPO 2		Reaction conditions				PAA 3		
	\mathbb{R}^1	\mathbb{R}^2	Y	Procedure	Solvent	Temperature (°C)	Time		Yield (%)	Mp (°C)
1a	t-Bu	_		А	CH ₂ Cl ₂	20	10 min	3a	99	114.0-115.0
1b	Ph	_		А	CH_2Cl_2	20	10 min	3b	93	144.0-145.0
1c	Me	_		А	CH_2Cl_2	20	10 min	3c	97	95.0-97.0
2a	<i>t</i> -Bu	Me	Ι	В	CH ₂ Cl ₂ /THF	0–5	7 d	3d	71	117.5-118.0
2b	Ph	Me	Ι	В	CH ₂ Cl ₂ /THF	0–5	6 d	3e	65	122.0-123.0

Table 2 The synthesis of α -(*N*-acylamino)alkyltriphenylphosphonium salts **4**

	ATPO 2	or PAA 3		Reaction conditions			APS 4		
	\mathbb{R}^1	\mathbb{R}^2	Х	Procedure	Temperature (°C)	Time		Yield (%)	Mp (°C)
3a	t-Bu	Н	BF_4	С	105	4.5 h	4a	99	183.0-183.5
3a	t-Bu	Н	BF_4	D	20	24 h	4a	99	
3b	Ph	Н	BF_4	С	105	2.5 h	4b	94	192.0-192.5
3b	Ph	Н	BF_4	D	20	24 h	4b	98	
3c	Me	Н	BF_4	С	105	1 h	4c	99	168.5-169.0
3c	Me	Н	BF_4	D	20	12 d	4c	89	
3d	t-Bu	Me	Ι	С	115	1 h	4d	36	
3d	t-Bu	Me	Ι	D	20	19 h	4d	72	178.5-179.5
3e	Ph	Me	Ι	D	20	18 h	4 e	90	166.5-167.0
2c	<i>t</i> -Bu	MeOCH ₂	Ι	В	0–5	8 d	4f	69	146.5-148.0

They have also been applied as α -amidoalkylating agents.^{11,12} The most frequently used method for the synthesis of APS consists in the alkylation of triphenyl-phosphine with *N*-(α -chloroalkyl)amides,^{4,9–11,13,14} *N*-(α -hydroxyalkyl)amides^{7,14,15} or *N*-(α -alkoxyalkyl)amides.¹⁵ Unfortunately, these methods are applicable mainly for the synthesis of *N*-acylaminomethyltriphenylphosphonium salts (**4**, R² = H).

Phosphoranylidene-5(4*H*)-oxazolones 1, dissolved in CH₂Cl₂, react smoothly with an equimolar amount of water in the presence of tetrafluoroboric acid at room temperature to give *N*-acyl- α -triphenylphosphonioglycine tetrafluoroborates 3 in excellent yields in 10 min (Table 1, Procedure A).¹⁷ The obtained α -triphenylphosphonioglycine derivatives **3a–c** are stable crystalline compounds.

Phosphonium salts 2 undergo hydrolysis in CH₂Cl₂/ THF solution without any acidic catalyst at 0–5 °C in a few days; however, only in the case of phosphonium salts **2a** and **2b** were we able to isolate relatively stable α -triphenylphosphonio- α -amino acids **3d** and **3e** (Table 1, Procedure B).¹⁸ In the case of phosphonium salt **2c**, we obtained directly the corresponding α -(*N*-acylamino)alkyltriphenylphosphonium salt **4f** as the product of hydrolysis and consecutive decarboxylation. (Table 2).

The α -triphenylphosphonio- α -amino acids **3a–d**, when heated up to 105–115 °C under reduced pressure (5 mmHg), underwent decarboxylation to the corresponding α -(*N*-acylamino)alkyltriphenylphosphonium salts **4a–d**, usually in very good yields. Only in the case of compound **4d** the yield of decarboxylation was poor (Table 2, Procedure C).¹⁹ Another milder procedure for the decarboxylation of α -triphenylphosphonio- α -amino acids **3** involves their decarboxylation in CH₂Cl₂ at 20 °C, in the presence of a catalytic amount of diisopropylethylamine (Table 2, Procedure D).²⁰

The structures of *N*-acyl- α -triphenylphosphonio- α -amino acids **3a**–**e** and α -(*N*-acylaminomethyl)triphenylphosphonium salts **4a**–**f** were confirmed by spectroscopy (IR, ¹H and ¹³C NMR); in the case of new compounds satisfactory elemental analyses were obtained.¹⁶

In conclusion, the hydrolysis of 4-triphenylphosphoranylidene-5(4*H*)-oxazolones **1** and 4-alkyl-4-triphenylphosphonio-5(4*H*)-oxazolones **2** provides hitherto unknown *N*-acyl- α -triphenylphosphonio- α -amino acids **3**. Their decarboxylation offers an effective and convenient method for the synthesis of α -(*N*-acylamino)alkyltriphenylphosphonium salts **4**, including α -substituted derivatives ($\mathbb{R}^2 \neq \mathbf{H}$), which are difficult to obtain by other synthetic methods.

References and notes

- Mazurkiewicz, R.; Kuźnik, A.; Grymel, M.; Październiok-Holewa, A. Arkivoc 2007, VI, 193–216.
- Mazurkiewicz, R.; Pierwocha, A. Monatsh. Chem. 1996, 127, 219– 225.
- Mazurkiewicz, R.; Pierwocha, A. Monatsh. Chem. 1997, 128, 893– 900.
- Drach, B. S.; Dolgushina, I. Yu.; Sinitsa, A. D. Zh. Obshch. Khim. 1975, 45, 1251–1255.
- 5. Brovarets, V. S.; Lobanov, O. P.; Drach, B. S. Zh. Obshch. Khim. 1983, 53, 660–664.

- Brovarets, V. S.; Lobanov, O. P.; Kisilenko, A. A.; Kalinin, V. N.; Drach, B. S. Zh. Obshch. Khim. 1986, 56, 1492–1504.
- Brovarets, V. S.; Lobanov, O. P.; Vinogradova, T. K.; Drach, B. S. Zh. Obshch. Khim. 1984, 54, 288–301.
- Smolii, O. B.; Brovarets, V. S.; Pirozhenko, V. V.; Drach, B. S. Zh. Obshch. Khim. 1988, 58, 2635–2643.
- Smolii, O. B.; Brovarets, V. S.; Drach, B. S. Zh. Obshch. Khim. 1986, 56, 2802–2803.
- Smolii, O. B.; Brovarets, V. S.; Pirozhenko, V. V.; Drach, B. S. Zh. Obshch. Khim. 1988, 58, 2465–2471.
- 11. Drach, B. S.; Sviridov, E. P.; Kirsanov, A. V. Zh. Obshch. Khim. 1972, 42, 953–954.
- Kozhushko, B. N.; Gumenyuk, A. V.; Palichuk, Yu. A.; Shokol, V. A. Zh. Obshch. Khim. 1977, 47, 333–339.
- Shokol, V. A.; Kozushko, B. N.; Gumenyuk, A. V. Zh. Obshch. Khim. 1977, 47, 1110–1118.
- Kasukhin, L. F.; Brovarets, V. S.; Smolii, O. B.; Kurg, V. V.; Budnik, L. V.; Drach, B. S. *Zh. Obshch. Khim.* 1991, *61*, 2679–2684.
- Petersen, H.; Reuther, W. Justus Liebigs Ann. Chem. 1972, 766, 58– 72.
- 16. Spectral and analytical data for compound: **3a**: IR (CH₃CN, cm⁻¹): 3350br, 1764vs, 1732vs, 1672vs, 1516s; ¹H NMR (300 MHz, CD₃CN): δ 7.77 (m, 15H), 7.45 (dd, J = 7.5 Hz, J = 2.7 Hz, 1H), 6.35 (dd, J = 14.7 Hz, J = 8.1 Hz, 1H), 0.88 (s, 9H); ¹³C NMR (75 MHz, CD₃CN): δ 179.6 (d, J = 2.0 Hz), 166.4 (d, J = 7.0 Hz), 136.1 (d, J = 3.0 Hz), 135.8 (d, J = 10.0 Hz), 130.9 (d, J = 13.0 Hz), 119.2 (d, J = 85.5 Hz), 54.0 (d, J = 62.4 Hz), 39.1, 26.9; Anal. Calcd for C₂₅H₂₇BF₄NO₃P: C, 59.19; H, 5.36; P, 6.11. Found: C, 59.07; H, 5.78; P, 5.80. Compound **3b**: IR (CH₃CN, cm⁻¹): 3320br, 1768vs, 1740vs, 1676vs, 1526s; ¹H NMR (300 MHz, CD₃CN): δ 8.11 (br d, J = 7.8 Hz, 1H), 7.64 (m, 20H), 6.74 (dd, J = 14.7 Hz, J = 8.7 Hz, 1H); ¹³C NMR (75 MHz, CD₃CN): δ 168.5 (d, J = 2.6 Hz), 166.2 (d, J = 7.0 Hz), 136.3 (d, J = 3.0 Hz), 135.7 (d, J = 10.0 Hz), 133.8, 132.7, 131.0 (d, J = 12.6 Hz), 129.6, 128.4, 118.5 (d, J = 85.1 Hz), 54.0 (d, J = 61.0 Hz); Anal. Calcd for C₂₇H₂₃BF₄NO₃P: C, 61.51; H, 4.40; P, 5.87. Found: C, 61.58; H, 4.29; P, 5.57. Compound 3c: IR (CH₃CN, cm⁻¹): 3324br, 1760vs, 1744vs, 1700vs, 1520s; ¹H NMR (300 MHz, CD₃CN): δ 7.80 (m, 15H), 7.63 (br d, J = 8.7 Hz, 1H), 6.63 (dd, J = 14.7 Hz, J = 9.0 Hz, 1H), 1.76 (s, 3H); ¹³C NMR (75 MHz, CD₃CN): δ 171.4 (d, J = 2.6 Hz), 166.3 (d, J = 7.1 Hz), 136.4 (d, J = 3.0 Hz), 135.6 (d, J = 9.6 Hz), 131.0 (d, J = 12.5 Hz), 118.0 (d, J = 85.6 Hz), 52.9 (d, J = 60.4 Hz), 26.2; Anal. Calcd for C₂₂H₂₁BF₄NO₃P·THF: C, 58.12; H, 5.44; P, 5.76. Found: C, 58.52; H, 5.53; P, 5.65. Compound 3d: IR (Nujol, cm⁻¹): 3340br, 1740vs, br, 1672vs, 1516s; ¹H NMR (300 MHz, CD₃CN): δ 7.72 (m, 15H), 7.52 (br d, J = 7.5 Hz, 1H), 1.91 (d, J = 18.9 Hz, 3H), 0.80 (s, 9H); ¹³C NMR (75 MHz, CD₃CN): δ 179.4, 169.8 (d, J = 11.1 Hz), 135.7 (d, J = 9.1 Hz), 134.6 (d, J = 3.0 Hz), 129.6 (d, J = 12.6 Hz), 120.5 (d, J = 83.1 Hz), 64.5 (d, J = 61.0 Hz), 38.0, 26.5, 26.0; Anal. Calcd for C₂₆H₂₉INO₃P: C, 55.63; H, 5.21; N, 2.50; P, 5.52. Found: C, 55.52; H, 5.30; N, 2.52; P, 5.17. Compound **3e**: IR (Nujol, cm⁻¹): 3336br, 1728vs, br, 1660vs, 1520s; ¹H NMR (300 MHz, CD₃CN): δ 8.23 (br d, J = 5.4 Hz, 1H), 7.60 (m, 20H), 2.00 (d, J = 18.3 Hz, 3H); ¹³C NMR (75 MHz, CD₃CN): δ 170.3 (d, J = 10.6 Hz), 168.8, 136.5 (d, J = 9.1 Hz), 135.5 (d, J = 3.1 Hz), 133.8, 132.7, 130.4 (d, J = 12.8 Hz, 129.4, 128.5, 120.7 (d, J = 82.1 Hz), 65.8 (d, J = 59.8 Hz), 26.4; Anal. Calcd for $C_{28}H_{25}INO_3P$: C, 57.84; H, 4.33; N, 2.41; P, 5.33. Found: C, 57.67; H, 4.39; N, 2.45; P, 5.43. Compound **4a**: IR (CH₂Cl₂, cm⁻¹): 3384br, 1668vs, 1520vs; ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3)$: δ 7.73 (m, 16H), 5.08 (dd, J = 6.0 Hz, J = 3.3 Hz,2H), 0.92 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ 180.3, 135.0 (d, J = 3.0 Hz), 134.2 (d, J = 9.6 Hz), 130.1 (d, J = 12.6 Hz), 117.7 (d, J = 84.1 Hz), 38.5, 37.6 (d, J = 56.9 Hz), 26.8; Anal. Calcd for C₂₄H₂₇BF₄NOP: C, 62.22; H, 5.87; P, 6.69. Found: C, 61.83; H, 5.77; P, 6.42. Compound **4b**: IR (CH₂Cl₂, cm⁻¹): 3368br, 1664vs, 1528vs;

¹H NMR (300 MHz, CDCl₃): δ 8.30 (br dd, J = 5.8 Hz, J = 5.8 Hz, 1H), 7.56 (m, 20H), 5.30 (dd, J = 6.1 Hz, J = 3.1 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 168.3, 135.2 (d, J = 3.0 Hz), 134.1 (d, J = 10.0 Hz, 132.2, 131.6, 130.1 (d, J = 12.6 Hz), 128.5, 127.2, 117.1 (d, J = 84.1 Hz), 37.8 (d, J = 56.9 Hz); Anal. Calcd for C₂₆H₂₃BF₄NOP: C, 64.62; H, 4.80; P, 6.41. Found: C, 64.25; H, 4.72; P. 6.52. Compound 4c; IR (CH₂Cl₂, cm⁻¹); 3364br, 1688vs. 1524vs;¹H NMR (300 MHz, CDCl₃): δ 7.77 (m, 16H), 5.06 (dd, J = 6.4 Hz, J = 3.4 Hz, 2H), 1.81 (d, J = 1.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 171.9, 135.3 (d, J = 3.0 Hz), 134.0 (d, J = 10.1 Hz), 130.3 (d, J = 12.5 Hz), 117.0 (d, J = 84.1 Hz), 37.1 (d, J = 57.9 Hz), 21.9; Anal. Calcd for C₂₁H₂₁BF₄NOP: C, 59.89; H, 5.03; P, 7.35. Found: C, 59.86; H, 4.76; P, 7.46. Compound 4d: IR (CH₂Cl₂, cm⁻¹): 3230br, 1652vs, 1512vs; ¹H NMR (300 MHz, CDCl₃): δ 8.72 (dd, J = 6.7 Hz, J = 6.7 Hz, 1H), 7.76 (m, 15H), 6.18 (m, 1H); 1.76 (dd, J = 17.4 Hz, J = 7.3 Hz, 3H), 0.94 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ 179.3 (d, J = 2.2 Hz), 134.7 (d, J =9.4 Hz), 134.4 (d, J = 3.0 Hz), 129.8 (d, J = 12.2 Hz), 118.8 (d, J = 82.4 Hz), 44.6 (d, J = 51.9 Hz), 38.5, 27.3, 17.4 (d, J = 4.8 Hz); Anal. Calcd for C₂₅H₂₉INOP: C, 58.04; H, 5.65; N, 2.71; P, 5.99. Found: C, 58.04; H, 5.64; N, 2.73; P, 5.86. Compund 4e: IR (CH₂Cl₂, cm⁻¹): 3210br, 1656vs, 1528vs;¹H NMR (300 MHz, CDCl₃): δ 9.53 (dd, J = 7.6 Hz, J = 4.3 Hz, 1H), 7.63 (m, 20H), 6.33 (m, 1H); 1.93 (dd, J = 17.5 Hz, J = 7.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 167.8 (d, J = 2.2 Hz), 134.6 (d, J = 9.5 Hz), 134.6 (d, J = 3.5 Hz), 132.2, 131.5, 129.9 (d, J = 12.4 Hz), 128.3, 127.8, 118.4 (d, J =82.1 Hz), 45.8 (d, J = 51.3 Hz), 17.6 (d, J = 4.9 Hz); Anal. Calcd for C₂₇H₂₅INOP: C, 60.35; H, 4.69; N, 2.61; P, 5.76. Found: C, 60.25; H, 4.59; N, 2.59; P, 5.92. Compound 4f: IR (CH₂Cl₂, cm⁻¹): 3220br, 1656vs, 1512vs; ¹H NMR (300 MHz, CDCl₃): δ 8.75 (dd, J = 7.5 Hz, J = 4.8 Hz, 1H), 7.77 (m, 15H), 6.27 (m, 1H), 4.12 (ddd, J = 9.6 Hz, J = 9.6 Hz, J = 9.6 Hz, 1H), 3.77 (ddd, J = 31.8 Hz, J =9.0 Hz, J = 5.1 Hz, 1H), 2.67 (s, 3H), 0.91 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ 179.9 (d, J = 1.8 Hz), 135.2 (d, J = 9.7 Hz), 134.0 (d, J = 3.0 Hz), 129.4 (d, J = 12.7 Hz), 119.1 (d, J = 83.0 Hz), 67.8 (d, J = 2.5 Hz), 57.8, 49.3 (d, J = 51.2 Hz), 38.6, 27.3; Anal. Calcd for C₂₆H₃₁INO₂P: C, 57.05; H, 5.71; N, 2.56; P, 5.66. Found: C, 57.09; H, 5.56; N, 2.51; P, 5.46.

- 17. *Procedure A*: To a stirred solution of 4-triphenylphosphoranylidene-5(4*H*)-oxazolone **1** (5 mmol) in CH₂Cl₂ (7.5 cm³), water (0.09 cm³, 5 mmol) and an ethereal solution of tetrafluoroboric acid (54%, 0.70 cm³, 5.1 mmol) were added. After 10 min, the solvent was evaporated under reduced pressure and the residue was crystallized from THF (**3a** and **3c**) or chloroform (**3b**).
- 18. Procedure B: To a suspension of 4-alkyl-4-triphenylphosphonio-5(4H)-oxazolone 2 (5 mmol) in CH₂Cl₂ (6.75 cm³ for 2a and 2c or 13.5 cm³ for 2b), a solution of water (0.22 cm³, 12.5 mmol) in THF (6.75 cm³) was added and the mixture was stirred at 0–5 °C for the time given in Table 1 or 2. The reaction mixture was evaporated under reduced pressure. Crude 3d, 3e or 4f were dissolved in CH₂Cl₂ and the pure product was precipitated by the addition of diethyl ether.
- Procedure C: N-Acyl-α-triphenylphosphonio-α-amino acid 3 was heated at 105–115 °C under reduced pressure (5 mmHg) for the time given in Table 2. The residue was crystallized from ethyl acetate (4c) or purified by dissolving in CH₂Cl₂ and precipitating by means of addition of diethyl ether (4a–b).
- 20. Procedure D: To a stirred suspension of N-acyl- α -triphenylphosphonio- α -amino acid 3 (4 mmol) in CH₂Cl₂ (32 cm³), diisopropylethylamine (0.14 cm³, 0.8 mmol) was added. The reaction mixture was left for the time given in Table 2 at room temperature and then the solvent was evaporated under reduced pressure. The residue was purified by crystallization from a mixture of toluene and methanol (6:1, v/v; **4a**-c) or ethyl acetate (**4d**) or by dissolving in CH₂Cl₂ and precipitating by means of addition of diethyl ether (**4e**).